Tag Archives: natural insulation

  • 2019 the year of healthy building

    All buildings should be built with the occupant's health and comfort in mind, but much of what is built today falls short, we lack any regulatory requirement to deliver healthy buildings so it's down to customers to demand better, fortunately, there are plenty of people and businesses that can show us how.
  • Designing and building with natural insulation materials

    Why what we build from matters

    The best buildings are life-enhancing and support our physical and mental health. Great design and healthy products enable the delivery of a healthy internal environment - meaning good indoor air quality, natural lighting as well as excellent thermal and acoustic comfort. In order to do this, we have to ensure we practise good decision making which requires an informed and holistic approach. Products that are low embodied carbon, natural, non-toxic, and healthy such as natural insulation have an important part in delivering better buildings.

    But it’s not only what a building is made of that contributes to a healthier living environment ventilation also plays a significant role. Where non-sorptive materials (i.e. in this instance ones that cannot absorb and release water as a vapour or liquid as opposed to sorptive ones that can) are used such as Polyisocyanurate (PIR) insulation moisture needs to be ‘managed out’ of a building to prevent poor air quality or potential condensation within the structure, non-sorptive materials are highly prevalent in modern construction methods meaning that the ‘fabric’ itself cannot help buffer and moderate the internal environment and ventilation is the only strategy to remove water vapour or pollutants. However, emerging evidence suggests that relying on ventilation strategies alone to provide healthy air inside low energy buildings is, in many cases, presenting significant risks to the health of occupants as well as the health of the building fabric.[i]

    In order to build better, healthier more efficient buildings and taking a holistic approach the inevitable conclusion is that alternative strategies and materials should be seriously considered in order to achieve these elevated levels of performance. This presents a real opportunity to leverage design and natural building materials to deliver better standards. As insulation by volume is a significant part of any build cost, plus it has a direct correlation to building performance and occupant health, this is where the focus of building designers, architects, developers and owners is moving.

    The 'Protexion Campaign' to promote natural insulation materials.

    To address these issues and help promote the already growing market for natural insulation materials in the summer of 2018 Ecomerchant and Steico UK joined forces to launch a campaign to champion the benefits of using natural insulation products.  The same principles that sit behind the promotion of natural insulation products were echoed by the Alliance for Sustainable Building Products and the Natural Fibre Insulation Group, the members of which, originally proposed that more work needed to be done to highlight the considerable benefits of natural insulation to a market that has largely ignored them in favour of cheap synthetic materials. Despite the clearly defined, tested and verified performance natural insulation worldwide it has not been taken up in the UK as much as in other countries. In the UK the default insulation materials are still mineral (glass) wool and foil backed Polyisocyanurate (PIR) however previous cost savings afforded by synthetic insulation have largely been lost and the price differential assumed before in favour of synthetic insulation has narrowed to the extent that natural insulation options can now be less expensive than synthetic ones plus the increase in timber frame and the desire for better airtightness is driving constructors towards natural solutions. Year on year sales in natural insulations have seen double-digit growth and a widening of the customer base to include modular construction, custom and self-build and social housing.

    To help inform potential users of natural insulation materials the Protexion campaign developed a dedicated website www.ecomerchant.co.uk/protexion  where you will find the wheel (illustrated below) the wheel has dynamic segments (links) e.g. health, fire and acoustic which click through to more information on each subject, you can also download wood fibre insulation certifications and find toxicology reports and environmental product declarations, this is the type of clear unambiguous information that allows us to make informed and better design choices.

    The Protexion wheel, each segment links to the relevant role with supporting information, the wheel also links to accreditations, EPD's and toxicology reports. Click the image above to link to the Protexion site.

    The appeal of natural insulation materials

    How we select insulation needs to be about having a real choice and for specifiers to be equipped with the right knowledge to compare materials on a like-for-like basis plus different parts of the building will require different performance criteria no one insulation type will be the best for all applications.

    To design a well-insulated building, you need to make informed decisions throughout all phases of a construction project to ensure your building performs as you envisage as mentioned above.

    However, selecting the right insulation is about more than just reaching building regulation compliance or ‘keeping in the heat’. It’s about ensuring a building protects its occupants’ entire well-being and comfort, the following list covers most of the core benefits and features of natural insulation and highlights the role they can play in delivering better, healthier and low impact buildings.

    How well does insulation keep the heat out?

    Summer overheating

    High internal temperatures can cause respiratory or cardiovascular problems. Work by CIBSE and Arup suggests that most people begin to feel ‘warm’ at 25°C and ‘hot’ at 28°C. Their report also defines 35°C as the internal temperature above which there is a significant danger of heat stress. For vulnerable occupant groups, the impact of overheating can take effect much sooner with potentially much poorer outcomes.

    Low fabric thermal mass leaves buildings more vulnerable to uncomfortably high, and in some instances, dangerously high internal temperatures in summer. This problem of summer overheating has been identified, by the NHBC and others, as a particular problem in buildings vulnerable to excessive heat gain with inadequate ventilation.

    In the UK, thermal insulation to protect from the cold is essential, particularly given ever-increasing energy costs. However, as demand for the usable square footage of buildings increases, basement and loft conversions are the routes many now take. However, these parts of a home or office, are the spaces most prone to extremes in temperature. They, therefore, need more thought – i.e. how do you keep a space warm in winter but, for a loft, how to keep it cool come summer.

    Compared with synthetic insulation materials, wood fibre insulation has a much higher density. This higher density means that natural insulation makes for a better heat buffer as the high midday temperature will only reach the internal side and be lost at night when the temperature is already cooler outside.

    High internal summer temperatures are caused by heat from appliances and occupants, solar gain through windows and external heat penetrating through the fabric. It is the latter issue of penetrating heat where the thermal mass of natural insulation systems can delay the arrival of this heat energy so that it is emitted internally in the relative cool of the night. Perhaps good design with natural systems can hit a ‘Goldilocks zone’ of just the right levels of thermal mass and thermal conductivity.

    Thermal comfort

    Maintaining internal temperature around a comfortable mean is at the root of good fabric first low energy design. In lightweight constructions, some degree of thermal mass provided by the fabric helps to smooth out the internal temperature fluctuations which may be caused by heating systems or the opening and closing of windows and doors, for example. Natural insulation and systems tend to have high thermal mass relative to other types of insulation. This is due to the inherent physical properties of the cellulose or protein-based fibres and significantly enhanced by the presence of chemically bound water contained in these fibres. Water has a very high heat capacity which is twice that of concrete so its presence in natural fibres adds to the ability of the insulation to absorb heat energy.

    How a building’s lack of breathability is hurting our health

    A breathable structure is one that allows the passage of moisture.

    Those of us committed to the development of natural insulation products and systems view fabric breathability, or more accurately, the dry transport of moisture, as an important component in overall fabric performance. The ability of natural and hygroscopic materials to absorb and release water whilst remaining dry reduces the risk of interstitial condensation and ultimate fabric failure.

    Natural fibres constantly adjust humidity levels away from extremes of damp and dryness helping maintain air moisture at comfortable levels, reducing the risk of both surface condensation and the negative health risks from moulds, mites and viruses. Of course, fabric breathability is not an alternative to a good ventilation strategy but should be considered as part of a robust and healthy building strategy.

    In a report titled ‘Health and Moisture in Buildings,’ the authors conclude that ‘these risks [moisture in buildings] combine with the other more clearly defined risks to the durability and value of the building fabric. It is relatively easy to see and to cost the damage done to buildings where moisture imbalance occurs. It is estimated that perhaps 70 to 80% of all building damage is due to excessive or trapped moisture’  With such a large percentage of all building construction problems associated with water in some way, breathability is an essential component in preventing the accumulation of harmful water within the building’s fabric.  This is fundamental in reducing health risks from mould and mites that those suffering from respiratory illnesses such as asthma and chronic obstructive pulmonary disease (COPD) are particularly susceptible to.

    For effective breathability, there are four essential components that need to be considered:

    • a moisture pathway
    • a driving force
    • a sorptive fabric
    • vapour control.

    Natural fibre insulation is most effective as it suppresses potentially harmful water by binding and releasing moisture which helps regulate humidity levels as the moisture moves.

    Easy-to-fit insulation

    A well-designed building takes into consideration how a material performs throughout the building’s entire life cycle. This includes ease of installation. Steico’s wood fibre insulation is simple and easy to fit (either packed or friction-fitted), eliminating installer error, keeping construction programmes tight and costs low.

    How insulation is fitted into or onto the building also has an impact on performance, poorly fitted insulation will allow the passage of air through the structure which can quickly strip out the heat from a building. Tests by Paul Jennings from Aldas featured in the documentary The Future of Housing demonstrated that a building with an air change of 9 m3/hour/m2 @ 50 pascals  (Building Regs stipulates 10) when subject to a modest 20 miles/hr wind will take just 7 minutes to remove the heat from the building, what this shows is that regulatory compliance is not a good indicator of building efficiency, a guarantee of lower bills or occupant comfort.  Minimising air movement through insulation is helped if insulation is designed to help restrict airflow, features such as tongue and groove profiles and dense fibre friction fit batts help to eliminate and reduce air pathways through the building.

    Indoor air and occupant health

    Creating and maintaining a healthy and comfortable indoor environment is a complex and difficult challenge. Temperature, humidity and carbon dioxide (CO2) must be maintained at safe and comfortable levels. Moreover, the introduction of pollutants such as particulates and volatile organic compounds (VOCs) greatly influences indoor air quality. A robust ventilation strategy is clearly critical to CO2 levels, but the building fabric can play an important role in helping to manage temperature, humidity and pollution levels. Sheep’s wool insulation, in particular, can mitigate and absorb harmful indoor emissions including formaldehyde; the high levels of Keratin based in sheep’s wool are known to react and eliminate formaldehyde test results[ii] showed that Thermafleece sheep’s wool insulation absorbed 90mg formaldehyde per 1kg of insulation.

    Internally generated air pollution

    Finally, there is a very real and growing problem of indoor air pollution. The problem of poor external air is now well documented with a recent report from the Royal College of Physicians, Every Breath We Take, indicating that air pollution is leading to an estimated 9,500 annual premature deaths in London alone. The report authors recognise the current lack of focus on indoor air. Nonetheless, clients and designers can have significant influence over VOC and particulate levels by selecting low or zero emission products and systems.

    A quick look at the issue of fire

    All insulations will meet fire safety standards, but this is a minimum rating. Fire protection is a challenging topic and it combines materials (including fire testing and certification) and design in an effort to minimise risk, in all cases it is the mix of these two elements that will determine regulatory and performance compliance. There are also issues to consider in the use of fire retardants which evidence shows can be detrimental to human health[iii] However, there are some inherent properties of natural insulation that should be considered. Most natural insulation materials either resist combustion such as sheep's wool or 'char' quickly creating a carbon layer that helps resist the spread of fire such as wood fibre, additionally when burnt they will not give off toxic fumes such as cyanide as polyisocyanurate (PIR) or petrochemical insulation materials do.

    Will the house be standing in 100 years?

    Condensation is one of the costliest risks to buildings causing huge maintenance repairs and structural damage. Natural materials are better able to absorb and release water meaning it is better able to protect from and buffer moisture thereby becoming a key part of healthy living and building durability.

    Comfort for occupants

    Insulation improves comfort by moderating external effects and smoothing out variations. This applies to cold, heat and sound. One of the overlooked benefits of natural insulation is delivered by increased mass. This means it is better at reducing both overheating and noise pollution than synthetic insulation.

    Improved well-being

    Evenly warm walls deliver more radiant heat. Because people find radiant heat particularly pleasant, it is frequently possible to lower the actual ambient temperature without reducing the internal comfort. This leads to the positive side effect that reducing the ambient temperature by one degree means approximately a 5% energy cost saving.

    Effective protection against mould

    The humidity in the air will only condense on a cold wall, by creating warm walls, this condensation is eliminated. Without damp patches, mould is unable to grow. Mould is avoided from the outset.

    Reduced air movement

    Draughts caused by convection can be unpleasant. At uninsulated, external walls the air cools down, falls to the ground and flows to the centre of the room where it warms up and ascends again. This does not occur with well-insulated buildings. The cooling effect is reduced or eliminated. If the air is still, we do not feel these draughts and less dust is disturbed, providing positive side effects, particularly for allergy sufferers.

    Cancelling out the noise for a peaceful night’s sleep

    The higher density of natural insulations - such as wood fibre - makes them better at reducing noise. Sounds external to the building, such as traffic or music, as well as those from within the building, through walls and ceilings are attenuated better by wood fibre than synthetic equivalents. In providing better protection from acoustic pollutants, occupants often report a building as being more restful and relaxing thereby encouraging better mental health.

    When a building is well-designed and well-built, occupants should be at their peak comfort. With the average person spending approximately 80% of their lives in enclosed rooms, an occupant’s well-being is imperative. Therefore, the products used to achieve this should cover all the issues affecting a building’s construction, its impact on both its occupants and nature.

    Buildability

    During construction, the great British weather inevitably gets a building’s shell thoroughly soaked before the roof goes on and it can begin to dry out. Using insulations that trap moisture and do not allow it to easily escape can cause damage to timber frame buildings and roof structures. Wood fibre sheathing and sarking boards are designed to be exposed to the elements during construction by adding in paraffin wax (candle wax) to the mix during manufacture. This means rain will repel, even when a board is cut, as the wax is ‘through and through’. Additional protection should be considered if the wood fibre is too exposed to prolonged bouts of heavy rain.

    Whilst wood fibre insulation can appear to absorb rainwater it dries very quickly afterwards without any detriment to the insulation material itself. Materials such as glass or mineral wool take up water in a similar way but are not able to dry quickly and should be removed if soaked to avoid damage to timbers.

    Obviously, you should try and avoid soaking your insulation materials but if the worst happens you know that wood fibre will have no issues.

    Wood fibre is clean and easy to use, there’s no chance of toxic fibres or dust, in short, it’s easier to handle and fit meaning that the installer tends to achieve a higher quality job. The snug fitting batts leave no gaps and the tongue and groove profile for the rigid boards ensures a tight secure fit. Disposal costs are less as natural insulation requires no specialist waste facilities.

    Conclusions

    Buildings should be considered not as standalone discrete entities, but as part of a system in constant and dynamic interaction with people and the environment. This interconnectedness means benefits, problems, solutions and consequences cannot be effectively addressed in isolation. If we adopt this broad and holistic approach, the benefits of natural insulation products and systems will come to the fore, and we should then expect the rate of market uptake to accelerate dramatically.

     

    Authors note:

    Thanks to the following for contributions to this article

    The Alliance for Sustainable Building Products

    The Natural Fibre Insulation Group

    The UK Centre for Moisture in Buildings

     References

    [i] ASBP-Briefing-Paper-The-health-and-wellbeing-benefits-of-natural-insulation-products-and-systems

    [ii] Eden Renewables ASBP Presentation Healthy Buildings Conference and Expo 2017, February 2017

    [iii] greensciencepolicy.org Flame retardant chemicals in building insulation

     

  • Design elements that help prevent overheating

    The current prolonged spell of hot weather will have highlighted to many of us the susceptibility of our buildings to overheating.

    The issue of overheating in buildings is a serious health risk, figures published on mortality rates during heatwaves make grim reading but still, our construction methods and building regulations fail to deliver buildings resilient to overheating.

    In this article, we look at why this is important, how we can design for cooler more comfortable buildings and what to look out for when planning building work.

    What is a heatwave?

    The World Meteorological Organisation definition of a heatwave is "when the daily maximum temperature of more than five consecutive days exceeds the average maximum temperature by 5oC, the normal period being 1961-1990". They are most common in summer when high pressure develops across an area. High-pressure systems are slow moving and can persist over an area for a prolonged period of time such as days or weeks.

    They can occur in the UK due to the location of the jet stream, which is usually to the north of the UK in the summer. This can allow high pressure to develop over the UK resulting in persistent dry and settled weather.

    When was the hottest heatwave in UK history?

    The scorching summer of 1976 was the hottest summer since records began. It led to a severe drought owing to the exceptionally dry conditions, although it is thought that 1995 was drier. In the summer of 1976, Heathrow had 16 consecutive days over 30oC from June 23rd to July 8th, and for 15th consecutive days from June 23rd to July 7th temperatures reached 32.2oC somewhere in England. But the single hottest temperature of 38.5oC was set on August 10th, 2003, the heatwave of 2003 led to the government creating a Heatwave Plan for England in response to the increase of deaths directly attributed to the heatwave.

    You can read the Heatwave Plan here https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/711503/Heatwave_plan_for_England_2018.pdf

    The current 2018 summer heatwave has seen the hottest day of the year so far recorded on Sunday, July 8th  a temperature of 32.4oC (90F) recorded in Gosport, Hampshire.

    Outdoor Temperature Thresholds – the effects on health

    Statistical analysis shows that maximum daytime outdoor temperatures are a predictor of heat-related mortality.

    In London, mortality starts to rise when the maximum daily external air temperature goes above 24.7ºC and has been estimated to rise by approximately 3% for every further 1ºC increase in external temperature. In other regions, the thresholds at which mortality starts to rise are lower. For example, the threshold for the North East of England is 20.9ºC.

    Heatwave Plan Regional Threshold Temperatures for Heat-Health Watch Alert Levels 2-4.

    Design considerations to prevent overheating - decrement delay and thermal buffering.

    Anyone familiar with spending a hot summer's day in a caravan and then another in a stone house with closed shutters will appreciate the meaning of ‘Decrement delay’. The inside of the caravan closely maps the rise and fall in external temperature to provide the familiar stifling effect on the occupants. In contrast, the internal air temperature of the stone house stays well below the midday heat, barely varies throughout the day and so provides relative comfort to those sheltering from the sun.

    In the caravan, as soon as the outside cladding starts to heat up, output is detected within minutes on the inside face as most of the heat quickly transfers through the aluminium / lightweight insulation composite; whereas as the face of the stone wall heats up, the heat is absorbed by the stone and progresses slowly from the outside inwards. Hours later, some of that heat has arrived on the inside face of the wall whilst the remainder is released back into the cooler evening air.

    The interesting, and often baffling, aspect of this phenomena is that the two materials can have very similar u-values - so that in steady-state conditions where heat applied at a constant rate over a period of time to the external face of both materials, there is an equally constant flow of (diminished) heat from the inside surfaces. Crucially though, for the purposes of thermal design, one material will start delivering heat to the inside before the other.

    Heat transfer factors: Conductivity, Density and Specific Heat Capacity

    But let’s start with understanding how different materials cause different heat flow rates.  What’s actually happening within the materials? The answer relates to the dynamics acting between three variable characteristics whose values are unique to each material. The rate of heat transfer is determined by:

    And of course, a further factor is the quantity or thickness of the material the heat is transferred through.

    Thermal Diffusivity

    Thermal Diffusivity ties the above factors together into an equation that measures the ability of a material to conduct thermal energy relative to its ability to store thermal energy.  In effect, it is a measure of thermal inertia or ‘buffering’.

    The equation is:

    Thermal diffusivity = thermal conductivity / specific heat capacity x density

    Examples:

    • Rigid polyurethane insulation has a thermal diffusivity of approximately 4.46 x 10-7 m2/s
    • Timber fibre insulation has a thermal diffusivity of approximately 1.07 x 10-7 m2/s
    • Copper has a thermal diffusivity of around 1.11 × 10−4 m2/s

    In a material with high thermal diffusivity, heat moves rapidly through it because the substance conducts heat quickly relative to its volumetric heat capacity or 'thermal bulk'.

    In the above three examples, we can see that heat races through copper while it moves more rapidly through rigid polyurethane than it does through timber fibre board.

    Introducing the variable heat source - Periodic heat flow

    ‘Thermal diffusivity’ then accounts for the different rates of heat transfer through the variety of materials from a constant heat source.

    However, when we look at the transference of the heat from the sun striking real-world roofs and walls, the heat source is not constant. The variability caused by such as the sun’s passage through the sky is known as ‘periodic heat flow’ and, because the sun behaves, in the same way, every day (‘diurnal’), its effects can be designed for.

    Decrement delay

    So, what is ‘Decrement delay’ and what can it do for us? In discussing its use we’re looking to take advantage of the fact that some materials are slower at transferring heat than others. In buildings, the benefits of decrement delay are only realised where the outside temperature fluctuates significantly higher and lower than the inside temperature. So, ideally, if the maximum heat delivery to the wall or roof is at around midday, and because we can achieve a delay in heat transfer, it should be possible for that heat to finally penetrate the wall or roof to the interior of the building some time later when the inside of the building is relatively cool and the outside temperature has fallen as the sun goes down. At this point, the heat ‘stored’ in the wall can be released from the wall in both directions without overheating the inside.

    The time it takes the peak temperature in the middle of the day on the outside of a wall or roof, to make its way to a peak temperature on the inside face, is called 'time lag'’ phase shift or, more commonly, 'Decrement delay'.

    By controlling decrement delay it is possible to control and prevent the overheating of a building.

    A delay of between 8 and 12 hours might be considered optimum in normal conditions during extended periods of hot weather and cloudless skies up to 16 hours may be required.

    It’s worth noting too at this point that in a construction element containing several layers, the sequence of the material layers that heat passes through is also a factor in determining decrement delay. For example, in masonry construction where insulation forms one layer, locating it on the exterior of the masonry can significantly enhance the decrement delay effect.

    The image below shows a roof make up with a variation in decrement delay (phase shift) achieved only by changing the insulation type, the overall section U value remains the same but the difference in phase shift is 8.8hours between the maximum at 16 hours and the minimum at 7.2 hours.

    Image courtesy of Steico


    How Decrement delay / Thermal buffering works on a rendered stone wall



     

    Amplitude damping and the ‘Decrement factor’

    A stable indoor temperature is an aspect of thermal comfort. In conditions where the outside temperature fluctuates relatively widely, a constant indoor temperature is desirable. For example, an outside temperature might vary between 10ºC and 30ºC while internally it might vary just 1ºC above or below 20ºC. The fabric of the building envelope has effectively dampened the degree of oscillation.

    The ability to attenuate the amplitude of the outside temperature to that of the inside is known as the 'decrement factor'.

    It is calculated as f (the decrement factor) = Ti (the maximum swing from the ambient temperature on the inside) / Te (the swing in external temperature)

    Example: From above, the peak to peak amplitude of the outside temperature is 20 degrees, and for the inside temperature it is 4 degrees.

    f = Ti / Te = 1 / 10 = 0.1

    Hence the closer the decrement factor approaches zero, the greater the effect the construction element has on attenuation. I.e. the smaller the decrement factor, the more effective the wall / roof at suppressing temperature swings.

    The decrement factor is determined by the type and thickness of the materials that make up the wall or roof that the heat passes through.

    (Confusingly, the same effect or 'amplitude suppression' is often expressed as a straight ratio. Taking the example above, the ratio would be 10:1 or 5:1 or more often just '10')

    For a construction element containing several layers, the sequence of the material layers that heat passes through is a factor in determining decrement delay. For example, in masonry construction where insulation forms one layer, locating it on the exterior of the masonry can significantly enhance the decrement delay effect.

    Calculating decrement delay

    The response of construction elements to periodic cycles in temperature and heat gain can be quantified by using the thermal admittance framework as described in EN ISO 13786:2007. The framework also provides the basis for the CIBSE 'Simple Dynamic Model' for calculating cooling loads and summertime space temperatures (CIBSE (2005) Guide A: Environmental design).

    Manually calculating thermal response simulations is not for the faint-hearted, but a number of programs are available to take the load - notably the freely available, Excel spreadsheet based 'Dynamic Thermal Properties Calculator' developed by Arup and distributed by the Concrete Centre.  https://www.concretecentre.com/Publications-Software/Publications/Dynamic-Thermal-Properties-Calculator.aspx

    The importance of decrement delay

    Decrement delay will nearly always be more important in hotter climes than in the UK. An exception though is in timber/steel frame construction. One of the more common criticisms directed at lightweight construction is the lack of thermal mass - which can lead to the familiar 'caravan effect' above. Whereas masonry construction has the obvious benefit of 'heavy' materials such as brick and block, framed structures are typified by combinations of a cavity and lightweight insulation - leading to low thermal diffusivity and so little in the way of decrement delay.


    Steico Special Dry Wood fibre insulation boards used on a pitched roof. Picture Courtesy Kithurst Builders Ltd

    Until recently, insulation products were chosen mostly on the basis of a combination of their u-value and their thickness. Since the most commonly used insulation materials such as polystyrene, polyurethane and mineral wool had broadly similar densities and heat capacities, their decrement capabilities were relatively insignificant. With the increasing availability of wood fibreboard insulation materials in the UK, boasting comparatively high levels of diffusivity, designers can look forward to realising thermal performances more closely mapped to traditional masonry construction.

    Some examples of materials

    Don’t building regulations already set a standard?

    Approved Document Part L1A is designed to drive the conservation of fuel and power, rather than set thermal comfort standards. It requires housebuilders to make “reasonable provision to limit heat gains” in dwellings in order to reduce the need for mechanical cooling. Specific criteria or thresholds are not specified. The overheating ‘check’ in SAP Appendix P provides a means of demonstrating that reasonable provision has been made, but the calculation is not integral to the SAP rating and it is unclear what happens if a development fails the test.

    The dwelling should have appropriate passive control measures to limit the effect of heat gains on indoor temperatures in summer, irrespective of whether the dwelling has mechanical cooling. The guidance given in paragraphs 2.38 to 2.42 of this approved document provides a way of demonstrating reasonable provision.” Criterion 3, Approved Document Part L1a

    The Standard Assessment Procedure (SAP) is the Government’s procedure for rating the energy performance of homes.

    Designers and developers in the UK need to show compliance with SAP for each of the domestic units they are designing. It is not a design tool, but rather a compliance tool intended to produce an energy rating.

    SAP Appendix P is a simplified check of whether the home could have an overheating problem. It uses regional average external air temperatures for the months of June, July and August, heat gains and fabric characteristics of the building in order to calculate monthly mean summer internal air temperatures. These are then compared to a table of threshold temperatures. For monthly mean internal temperatures below 20.5°C, overheating risk is predicted to be ‘not significant’, whereas for temperatures of 23.5°C and above, the risk is ‘high’.

    Issues with SAP

    The temperature inside a home depends on many variables and changes throughout the day. Overheating risk during severe hot weather events cannot be calculated using monthly average temperatures. Neither can the impact of the Urban Heat Island effect or future changes in climate.

    Housing Providers and experts consulted by the Zero Carbon Hub raised many concerns with SAP Appendix P. For example, it allows unrealistic assumptions to be included, such as that windows are constantly open, which make it too easy to pass.

    SAP 2012 (Appendix P): Levels of threshold temperature corresponding to a likelihood of high internal temperature during hot weather.

    To sum up

    We have to acknowledge that overheating is a problem to be avoided and that we don’t need a heatwave to prod us into action, buildings can overheat for a multitude of reasons but the use of materials that help buffer heat preventing rapid transfer through the building can be used to substantially mitigate the risk. Typical areas that will benefit from such design are timber frame and lightweight structures, on a brick or masonry house this will usually be the roof. This is an important area to factor in heat buffering as it combines the warmest part of the house (hot air rises) with the largest solar collector on the building – the roof itself. Wherever possible design with overheating in mind, the Building Regulations do not require minimum standards for decrement delay and SAP is currently under review regarding overheating, so the choice to design and build to prevent overheating is one that rests solely with you.

     Further reading

     BRE Overheating in Dwellings

    Tackling Overheating in Buildings

    Overheating - a growing threat that mustn't be ignored

     

     Our thanks to Sandy Patience Dip Arch RIBA editor of www.greenspec.co.uk for material used in this article

  • Healthy buildings or toxic buildings?

    The Healthy Home

    In our view, a healthy home is   ‘one that incorporates healthy design elements, non-toxic building materials, and proper construction techniques. It "breathes", emits no toxic gasses, and is resistant to mould and decay.

    Indoor air quality can be worse than outdoor air quality

    Here are our top tips when designing a healthy building.

    • Choose a simple build system
    • Use natural and non-toxic materials
    • Make the best use of natural light
    • Ensure adequate ventilation
    • Ensure that all building elements are compatible
    • Use a breathable vapour open system
    • Make the structure do the work
    • Take a whole-house approach to design
    • Include the end user in the design and build process

     

    The toxicity of construction materials in our homes is a serious issue homes do not have to contain potentially damaging materials.mitigating this should be considered right at the start at the design stage.

    Without a doubt, it is the control of moisture and the ventilation of the building that sits at the root cause of most building decay. We also have a huge issue with applying healthy principles to the biggest issue of all refurbishing existing buildings.  Often in these cases, the prophylactic principle should be applied, where some anticipation of problems such as damp penetration can be mitigated by choosing materials that can hold onto moisture and let it go later (drying out) or at least minimise or contain the problem. The issue with a more synthetic and hermetic approach is that such problems can often remain hidden deep within the building structure for a long time and on discovery lead to costly and extensive repairs.

    To apply healthy principles to any building project you first need to appreciate that the standards by which most UK construction is governed (and built to) do not account for the ‘health’ of a building in all but the most basic ways. So don’t expect a building that meets Building Regulations to be healthy.

    Damp problems are often first seen as a 'bloom' of household mould often triggered by warm wet air coming into contact with a cold surface, one that is poorly or insufficiently insulated.

    To describe an unhealthy home can be more effective at persuading us to adopt healthy principles. We will all recognise the description of an unhealthy building as one that fails to control the internal environment leading to partial, then increasing, early decay of the building fabric in turn leading to mould growth, rot and a failure of the element(s) to physically perform, the description would further include the use of toxic chemicals in materials and the resulting expulsion into the air of these toxins over time, and it would include the use of materials that contain allergens.

    Now most of us will recognise (and probably have experienced) the symptoms of poor building health but it is surprising how many of the houses built today have this very low on the agenda of considerations. The consequences of damp and unhealthy buildings can mean the aggravation of conditions like asthma, in the UK this is a real problem where 1 in 6 people have asthma a massive increase since the stable base in the 1970s with almost 2000 deaths per annum and 75,000 hospital admissions the cost to the state runs into £billions; most of this is directly linked to dust mite faeces which in turn is directly linked to relative humidity in houses, (as you find in an unhealthy house) other moulds, bacteria and diseases present in the same conditions are also linked to asthma.

    The main contributors to poor building health are the following

    • Water ingress
    • Condensation
    • Failure to control internal moisture
    • Poor build quality
    • The use of toxic materials
    • Poor ventilation
    • Material degradation over time leading to performance failure (e.g. air leaks)
    • Poor design
    A combined use of roof lights to flood a room with daylight and allow natural ventilation

    You can see that it is not only the absence of harmful environmental characteristics but also the presence of beneficial ones that define a healthy building. Designers should begin by avoiding harmful elements and attempt to incorporate supportive beneficial ones. This is why the inclusion of items such as natural light, ventilation and acoustic insulation is as important as layout and functionality in the whole house approach.

    Real progress is only made when the builder and future occupants work closely with the building’s designer to ensure that all these issues are addressed within the context of how the building is intended to be used.

    Thankfully a lot of the approach to building healthy homes is common sense and can be summarised in a few simple principles

    • Choose simpler building systems they are more failsafe
    • Manage moisture by creating a breathable shell to provide a means for managing and buffering variations in moisture
    • Include natural materials in many applications these will outperform synthetic ones.
    • Be involved at every stage

    As highlighted by recent events the toxicity inherent in our building materials can be a lethal problem especially in the case of fire, one of the most important materials used in the construction of a building is insulation, but can your choice of insulation really affect your health?

    A well-insulated house or office will protect your health, comfort and lifestyle but how many of us know and understand how to achieve this?

    Ecomerchant and Steico UK have joined forces to launch a protection campaign. It aims to champion the benefits of using natural insulation products, see www.ecomerchant.co.uk/protexion  where you will find the wheel (illustrated below) which has dynamic segments (links) e.g. health, fire and acoustic which click through to more information on each subject, you can also download wood fibre insulation certifications and find toxicology reports and environmental product declarations, this is the type of clear unambiguous information that allows us to make informed and better design choices.

    The Protexion wheel, each segment links to the relevant role with supporting information, the wheel also links to accreditations, EPD's and toxicology reports. Click the image above to link to the Protexion site.

    How we select insulation needs to be about having a real choice and for specifiers to be equipped with the right knowledge to compare materials on a like-for-like basis.

    To design a well-insulated building, you need to make informed decisions throughout all phases of a construction project to ensure your building performs as you envisage as mentioned above.

    However, selecting the right insulation is about more than just reaching building regulation compliance or ‘keeping in the heat’. It’s about ensuring a building protects its occupants’ entire well-being and comfort in the following ways.

    How well does insulation keep the heat out?

    In the UK, thermal insulation to protect from the cold is essential, particularly given ever-increasing energy costs. However, as demand for usable square footage of buildings increases, basement and loft conversions are the routes many now take. However, these parts of a home or office, are the spaces most prone to extremes in temperature. They, therefore, need more thought – i.e. how do you keep a space warm in winter but, for a loft, how to keep it cool come summer.

    Compared with synthetic insulation materials, wood fibre insulation has a much higher density. This higher density means that natural insulation makes for a better heat buffer as the high midday temperature will only reach the internal side and be lost at night when the temperature is already cooler outside.

    How a building’s breathability is hurting our health

    A breathable structure is one that allows the passage of moisture.

    With 90 percent of all building construction problems associated with water in some way, breathability is essential in measuring a building’s performance and preventing the accumulation of harmful water within the building’s fabric.  These are fundamental in reducing health risks from mould, mites that those suffering from respiratory illnesses such as asthma and chronic obstructive pulmonary disease (COPD) are particularly susceptible to.

    For effective breathability, there are four essential components that need to be considered:

    • a moisture pathway
    • a driving force
    • a sorptive fabric
    • vapour control.

    Natural fibre insulation is most effective as it suppresses potentially harmful water by binding and releasing moisture which helps regulate humidity levels as the moisture moves.

    Easy-to-fit insulation

    A well-designed building takes into consideration how a material performs throughout the building’s entire life cycle. This includes ease of installation. Steico’s wood fibre insulation is simple and easy to fit (either packed or friction-fitted), eliminating installer error, keeping construction programmes, tight and costs, low.

    How sustainability will save you time and money

    While all insulation is helping the environment by limiting energy being burnt for heat, natural fibre insulation materials are comparatively more robust. This means that when it comes to disposal, they can be composted – i.e. no specialist waste facilities or landfill. Throughout their lifecycle, they will additionally have a much lower, and often, negative carbon footprint.

    More than just protecting your home from fire

    All insulations will meet fire safety standards, but this is a minimum rating. The key differentiator between natural and synthetic is that natural insulations will prevent the spread of fire and if burnt, will not give off toxic fumes such as cyanide as polyisocyanurates (PIR) might. See article link below to Alliance for Sustainable Building Products (ASBP) Healthy Buildings or Toxic Buildings?

    Will the house be standing in 100 years?

    Condensation is one of the costliest risks to buildings causing huge maintenance repairs and structural damage. Natural materials are better able to absorb and release water whilst remaining dry meaning it is better able to protect from and buffer moisture thereby becoming a key part of healthy living.

    Comfort for occupants

    When selecting insulation for a building, there are implications for the health of the occupants, the structure of the building, its impact on the environment, its acoustic properties, durability and carbon footprint.

    Cancelling out the noise for a peaceful night’s sleep

    The higher density of natural insulations - such as wood fibre - makes them better at reducing noise. Sounds external to the building, such as traffic or music, as well as those from within the building, through walls and ceilings are attenuated better by wood fibre than synthetic equivalents. In providing better protection from acoustic pollutants, occupants often report a building as being more restful and relaxing thereby encouraging better mental health.

    When a building is well-designed and well-built, occupants should be at their peak comfort. With the average person spending approximately 80% of their lives in enclosed rooms, an occupant’s well-being is imperative. Therefore, the products used to achieve this should cover all the issues affecting a building’s construction, its impact on both its occupants and nature.

    Further reading

    ASBP Healthy Buildings Conference summary of key points, https://asbp.org.uk/asbp-news/healthy-buildings-or-toxic-buildings

    Read the expert’s view on healthy buildings including Professor Stephen Holgate CBE, Clinical Professor of Immunopharmacology at the University of Southampton and co-author of The Royal College of Physicians ‘Every breath we take‘ report, who explains why poor quality air is a lethal problem that affects us all, Consultant, Clinical Psychologist at UCL, Dr Sarah Mackenzie Ross who looks at the rapid rise in new chemical entities in our day-to-day environments and the consequences on our health, CIBSE’s Head of Sustainability Development Julie Godefroy  who questions the role of Building Regulations in delivering healthy buildings and Professor Anna Stec, fire toxicity expert from University of Central Lancashire who looks at the potential fatal effects when plastics in the home burn.

    Visit

    www.asbp.org.uk for more on sustainable building products

    www.ecomerchant.co.uk/protexion to see how insulation can provide so much more than keeping the heat in

4 Item(s)